Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.681
Filtrar
1.
Sci Rep ; 14(1): 8919, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637645

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Assuntos
Corticosterona , Núcleos Septais , Camundongos , Masculino , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Predomínio Social , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo
2.
Behav Brain Res ; 465: 114928, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38432301

RESUMO

Testosterone (T), estrogen receptor alpha (ERα), and androgen receptor (AR) play a significant role in the regulation of paternal behavior. We determined the effects of deprivation of paternal care on alterations in paternal behavior, T concentrations in plasma, and the presence of ERα and AR in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST), medial amygdala (MeA), and olfactory bulb (OB), as well as the corticosterone (CORT) concentrations in plasma caused by deprivation of paternal care in the Mongolian gerbil (Meriones unguiculatus). Twenty pairs of gerbils were formed; the pups were deprived of paternal care (DPC) in 10 pairs. In another 10 pairs, the pups received paternal care (PC). Ten males raised in DPC condition and 10 males raised in PC conditions were mated with virgin females. When they became fathers, each DPC male and PC male was subjected to tests of paternal behavior on day three postpartum. Blood samples were obtained to quantify T and CORT concentrations, and the brains were removed for ERα and AR immunohistochemistry analyses. DPC males gave less care to their pups than PC males, and they had significantly lower T concentrations and levels of ERα and AR in the mPOA and BNST than PC males. DPC males also had higher CORT concentrations than PC males. These results suggest that in the Mongolian gerbil father's absence causes a decrease in paternal care in the offspring, which is associated with alterations in the neuroendocrine mechanisms that regulate it.


Assuntos
Receptores Androgênicos , Núcleos Septais , Animais , Feminino , Masculino , Humanos , Gerbillinae/fisiologia , Receptores Androgênicos/metabolismo , Núcleos Septais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Comportamento Paterno/fisiologia , Área Pré-Óptica/metabolismo , Pai , Corticosterona
3.
Commun Biol ; 7(1): 339, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503808

RESUMO

The neural circuits underlying sleep-wakefulness and general anesthesia have not been fully investigated. The GABAergic neurons in the bed nucleus of the stria terminalis (BNST) play a critical role in stress and fear that relied on heightened arousal. Nevertheless, it remains unclear whether BNST GABAergic neurons are involved in the regulation of sleep-wakefulness and anesthesia. Here, using in vivo fiber photometry combined with electroencephalography, electromyography, and video recordings, we found that BNST GABAergic neurons exhibited arousal-state-dependent alterations, with high activities in both wakefulness and rapid-eye movement sleep, but suppressed during anesthesia. Optogenetic activation of these neurons could initiate and maintain wakefulness, and even induce arousal from anesthesia. However, chronic lesion of BNST GABAergic neurons altered spontaneous sleep-wakefulness architecture during the dark phase, but not induction and emergence from anesthesia. Furthermore, we also discovered that the BNST-ventral tegmental area pathway might participate in promoting wakefulness and reanimation from steady-state anesthesia. Collectively, our study explores new elements in neural circuit mechanisms underlying sleep-wakefulness and anesthesia, which may contribute to a more comprehensive understanding of consciousness and the development of innovative anesthetics.


Assuntos
Núcleos Septais , Vigília , Vigília/fisiologia , Núcleos Septais/fisiologia , Sono/fisiologia , Neurônios GABAérgicos/fisiologia , Anestesia Geral
5.
Neurochem Int ; 175: 105720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458538

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.


Assuntos
Ansiolíticos , Doença de Parkinson , Núcleos Septais , Ratos , Animais , Núcleo Dorsal da Rafe/metabolismo , Área Tegmentar Ventral/metabolismo , Serotonina/metabolismo , Núcleos Septais/metabolismo , Oxidopamina/toxicidade , Ansiedade , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Ansiolíticos/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460131

RESUMO

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Animais , Proteína Quinase C-delta/metabolismo , Anorexia/metabolismo , Neurônios/metabolismo , Núcleo Central da Amígdala/metabolismo , Vias Neurais/fisiologia , Núcleos Septais/fisiologia
7.
Addict Biol ; 29(2): e13366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380710

RESUMO

Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.


Assuntos
Alcoolismo , Núcleos Parabraquiais , Núcleos Septais , Masculino , Camundongos , Feminino , Animais , Etanol/farmacologia
8.
Curr Psychiatry Rep ; 26(1): 9-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183600

RESUMO

PURPOSE OF REVIEW: Emotions are prominent in theories and accounts of schizophrenia but are largely understudied compared to cognition. Utilizing the Research Domain Criteria (RDoC) Negative Valence Systems framework, we review the current knowledge of emotions in schizophrenia. Given the pivotal role of threat responses in theories of schizophrenia and the substantial evidence of altered threat responses, we focus on three components of Negative Valence Systems tied to threat responses: responses to acute threat, responses to potential threat, and sustained threat. RECENT FINDINGS: Individuals with schizophrenia show altered responses to neutral stimuli during acute threat, bed nucleus of the stria terminalis connectivity in response to potential threat, and threat responses associated with sustained threat. Our review concludes that Negative Valence Systems are altered in schizophrenia; however, the level and evidence of alterations vary across the types of threat responses. We suggest avenues for future research to further understand and intervene on threat responses in schizophrenia.


Assuntos
Esquizofrenia , Núcleos Septais , Humanos , Medo/fisiologia , Núcleos Septais/fisiologia , Emoções , Cognição
9.
Neuropharmacology ; 246: 109847, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218578

RESUMO

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 µl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 µl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 µl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.


Assuntos
Núcleos Anteriores do Tálamo , Ansiolíticos , Núcleos Septais , Masculino , Camundongos , Animais , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Ansiolíticos/farmacologia , Núcleos Septais/metabolismo , Ansiedade/tratamento farmacológico , Medo , Núcleos Anteriores do Tálamo/metabolismo
10.
Neuropsychopharmacology ; 49(4): 709-719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884740

RESUMO

The serotonin 5HT2c receptor has been widely implicated in the pathophysiology of alcohol use disorder (AUD), particularly alcohol seeking and the affective consequences of chronic alcohol consumption. However, little is known about the brain sites in which 5HT2c exerts its effects on specific alcohol-related behaviors, especially in females. Here, we investigated the effects of site-specific manipulation of the 5HT2c receptor system in the BNST on operant alcohol self-administration behaviors in adult mice of both sexes, including the acquisition and maintenance of fixed-ratio responding, motivation for alcohol (progressive ratio), and quinine-adulterated responding for alcohol on a fixed-ratio schedule (punished alcohol seeking). Knockdown of 5HT2c in the BNST did not affect the acquisition or maintenance of operant alcohol self-administration, nor did it affect progressive ratio responding for alcohol. This manipulation had only a subtle effect on responding for quinine alcohol selectively in females. On the other hand, chemogenetic inhibition of BNST 5HT2c-containing neurons (BNST5HT2c) increased operant alcohol self-administration behavior in both sexes on day 2, but not day 9, of testing. It also increased operant responding for 1000 µM quinine-adulterated alcohol selectively in males. Importantly, chemogenetic inhibition of BNST5HT2c did not alter operant sucrose responding or motivation for sucrose in either sex. We then performed cell-type specific anterograde tracing, which revealed that BNST5HT2c project to similar regions in males and females, many of which have been previously implicated in AUD. We next used chemogenetics and quantification of the immediate early gene cFos to characterize the functional influence of BNST5HT2c inhibition on vlPAG activity. We show that chemogenetic inhibition of BNST5HT2c reduces vlPAG cFos in both sexes, but that this reduction is more robust in males. Together these findings suggest that BNST5HT2c neurons, and to a small extent the BNST 5HT2c receptor, serve to promote aversive responses to alcohol consumption, potentially through sex-dependent disinhibition of vlPAG neurons.


Assuntos
Alcoolismo , Núcleos Septais , Feminino , Masculino , Camundongos , Animais , Serotonina/farmacologia , Quinina/farmacologia , Etanol/farmacologia , Alcoolismo/psicologia , Neurônios , Sacarose/farmacologia
11.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050120

RESUMO

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Assuntos
Etanol , Núcleos Septais , Humanos , Camundongos , Animais , Feminino , Etanol/farmacologia , Córtex Insular , Núcleos Septais/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/fisiologia
12.
Neuropsychopharmacology ; 49(2): 377-385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452139

RESUMO

Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.


Assuntos
Hormônio Liberador da Corticotropina , Núcleos Septais , Camundongos , Masculino , Feminino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Motivação , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
13.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128260

RESUMO

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Assuntos
Transtorno Depressivo Maior , Núcleos Septais , Humanos , Camundongos , Feminino , Masculino , Animais , Núcleos Septais/fisiologia , Transtorno Depressivo Maior/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , RNA/metabolismo
14.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053471

RESUMO

Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amygdala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis (BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response. Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-dependent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent access to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemogenetic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST regulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD therapies.


Assuntos
Alcoolismo , Núcleos Septais , Animais , Camundongos , Ratos , Consumo de Bebidas Alcoólicas , Etanol , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
15.
Proc Natl Acad Sci U S A ; 120(43): e2306475120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37847733

RESUMO

Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.


Assuntos
Núcleos Septais , Diferenciação Sexual , Adulto , Humanos , Masculino , Feminino , Androgênios/farmacologia , Hormônios Gonadais/farmacologia , Hormônios Gonadais/fisiologia , Puberdade
16.
Eur J Neurosci ; 58(7): 3630-3649, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715507

RESUMO

Foraging is a universal behaviour that has co-evolved with predation pressure. We investigated the role of the bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Both robotic and live predator interactions increased BNST GABA neuron activity. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared with pre-encounter behaviour. Inhibition of BNST GABA neurons had no effect on foraging behaviour post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and significantly altered their overall foraging performance. Inhibition of BNST GABA neurons during live predator exposure prevented changes in foraging behaviour from developing after a live predator threat. BNST GABA neuron inhibition did not alter foraging behaviour during robotic or live predator threats. We conclude that these results demonstrate that while both robotic and live predator encounters effectively intrude on foraging behaviour, the perceived risk and behavioural consequences of the threat are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behaviour.


Assuntos
Núcleos Septais , Camundongos , Animais , Neurônios GABAérgicos , Ansiedade
17.
Behav Brain Res ; 454: 114626, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37595756

RESUMO

Testosterone and its metabolites facilitate male-typical social behaviors in sexually experienced animals. The metabolite estradiol acts on estrogen receptors (ERs) within the bed nucleus of the stria terminalis (BNST) to facilitate socio-sexual behaviors. While circulating testosterone does not increase in naïve males, aromatase-expressing neurons within the BNST of naïve males are necessary for sex recognition, suggesting that local estradiol production may be responsible. In the present study, we examined ERɑ-immunoreactive (ir) cell number within the brain of sexually naïve male rats 24 h after an encounter with a novel animal. As expected, males investigated females more than males. Additionally, males that encountered females had fewer ERɑ-ir cells within both anterior and posterior BNST compared to those who encountered a novel male or a non-social control. There were no changes within the AVPV, MPN, or MeA. The decrease in ERɑ-ir cell number within the posterior BNST only occurred in males that encountered estrus females whereas the decrease in the anterior BNST occurred only in males that encountered non-estrus females. Additionally, anogenital investigations were correlated with fewer ERɑ-ir cells in the posterior BNST, while cage sniffing correlated with the number ERɑ-ir cells in the anterior BNST. There were no differences in serum testosterone 45 min or 24 h after the encounter, suggesting changes in ERɑ were due to local changes in estradiol levels. Our results expand upon previous research regarding the role of estradiol within the subregions of the BNST in naïve male rat socio-sexual behavior.


Assuntos
Receptor alfa de Estrogênio , Núcleos Septais , Feminino , Masculino , Animais , Ratos , Receptores de Estrogênio , Estradiol , Testosterona
18.
Behav Brain Res ; 453: 114628, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37579818

RESUMO

The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Cricetinae , Animais , Masculino , Feminino , Núcleos Septais/metabolismo , Mesocricetus , Comportamento Social , Agressão , Complexo Nuclear Corticomedial/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
Learn Mem ; 30(8): 164-168, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37620150

RESUMO

An inability to reduce fear in nonthreatening environments characterizes many anxiety disorders. The pathway from the ventral subiculum (vSUB) to the bed nucleus of the stria terminalis (BNST) is more active in safe contexts than in aversive ones, as indexed by FOS expression. Here, we used chemogenetic techniques to specifically activate the vSUB-BNST pathway during both context and cued fear expression by expressing a Cre-dependent hM3D(Gq) receptor in BNST-projecting vSUB neurons. Activation of the vSUB-BNST pathway reduced context but not cued fear expression. These data suggest that the vSUB-BNST pathway contributes to behavioral responses to nonaversive contexts.


Assuntos
Hipocampo , Núcleos Septais , Afeto , Sinais (Psicologia) , Medo
20.
Neuropharmacology ; 237: 109645, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392819

RESUMO

The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.


Assuntos
Doença de Parkinson , Núcleos Septais , Ratos , Animais , Receptores de GABA-A/metabolismo , Núcleos Septais/metabolismo , Serotonina/metabolismo , Oxidopamina/farmacologia , Ratos Sprague-Dawley , Ansiedade , Substância Negra/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...